
ACOUSTIC EMISSION WELD MONITORING 
IN THE 2195 ALUMINUM-LITHIUM ALLOY 

Due to its low density, the 2195 aluminum-lithium 
alloy was developed as a replacement for alloy 22 19 
in the Space Shuttle External Tank (ET). The 
external tank is the single largest component of the 
space shuttle system. It is 154 feet long and 27.6 feet 
in diameter, and serves as the structural backbone for 
the shuttle during launch, absorbing most of the 7 
million plus pounds of thrust produced. The almost 
4% decrease in density between the two materials 
provides an extra 7500 pounds of payload capacity 
necessary to put the International Space Station 
components into orbit. The ET is an all-welded 
structure; hence, the requirement is for up to five re- 
welds without hot cracking. Unfortunately, hot 
cracking during re-welding or repair operations was 
occurring and had to be dealt with before the new 
super lightweight tank could be used. Weld metal 
porosity formation was also of concern because it 
leads to hot cracking during weld repairs. 
Accordingly, acoustic emission (a) nondestructive 
testing was employed to monitor the formation of 
porosity and hot cracks in order to select the best 
filler metal and optimize the weld schedule. 

The purpose of this work is to determine the 
feasibility of detecting hot cracking in welded 
aluminum-litluum (Al-Li) structures through the 
analysis of acoustic emission data. By acoustically 
characterizing the effects of reheating during a repair 
operation, the potential for hidden flaws coalescing 
and becoming “unstable” as the panel is repaired 
could be reduced. The term “unstable” refers to the 
tendency of microcracks present fiom a previous 
weld pass to join together, forming a critically sized 
defect upon re-weld. Identification of regions where 
microcrack growth is likely to occur and the location 
of active flaw growth in the repair weld, as it is 
performed, will provide the welder with direct 
feedback as to the current weld quality enabling 
adjustments to the repair process be made in the field. 
An acoustic emission analysis of the source 
mechanisms present during welding has been 
conducted with the goals of locating regions in the 
weld line that are susceptible to damage from a repair 
operation, identifjmg the formation of critically sized 
flaws and providing acceptlreject criteria for the 
quality of a weld as it is performed. 

The acoustic signals generated by a material under 
load provide a means to both qualitatively and 
quantitatively monitor structural integrity. Each 
source mechanism has a somewhat unique acoustic 
signature varying in duration, amplitude, energy, 

frequency, etc. Two approaches have classically 
been used to identi@ the type of failure within a 
material; full waveform (frequency) and parametric 
(characteristic signal features). 

The parametric approach takes the output voltages 
fi-om the sensors mounted to the structure and 
through timing and threshold values, preset by the 
test conductor, captures the essence of the individual 
acoustic signals in a set of descriptive features 
including peak amplitude, rise time, duration, energy 
and counts. On the other hand, the waveform based 
approach stores the entire “digitized” waveform over 
a predetermined time period. The power spectrum of 
the digitized acoustic signal is computed through a 
fast Fourier analysis yielding the intensities of the 
embedded fiequency components. Both techniques 
have merit and deficiencies as to be described later. 
The analysis of the A1-Li AE data presented herein 
looks at each of the two standard techniques as well 
as takes the best features of each, generating a hybrid 
parametric-waveform (Paw) approach. The Paw 
analysis technique is based upon identifying 
variations in the characteristics obtained from the 
parametric and fiequency domain signal features. 
The analysis of the data from each approach is 
conducted through the use of an unsupervised 
artificial neural known as a self organizing map 
(SOM). In order to help determine the nature of the 
acoustic signal clusters found with the SOM, tensile 
tests on small sections cut fiom a repair panel are 
conducted and compared to the repair weld results. 

ACOUSTIC EMISSION TESTS AND RESULTS 

A total of 137 manual TIG repair welds consisting of 
one or more fill and cover passes were made on ten 
weld specimens; two 0.207 x 5.9 X 24.0 inch panels 
of 2195 Al-Li alloy joined together with variable 
polarity plasma arc (VPPA) welding. The samples 
were monitored acoustically with PAC (Physical 
Acoustics Corporation) WDI (Wide band Differential 
Integrated amplifier) sensors that were attached using 
hot melt glue. 

Re-welding was performed in 4 inch segments along 
the length of the initial weld, separated by three inch 
sections of the initial weld, Figure 1. The repair 
process began by planishing the bead flush with the 
panel surface over the repair region. A high-speed 
router was then used to create a slot in the weld 
material to approximately the mid-thickness point 
over the center of each repair zone and faired to the 
surface of the plate. Tungsten inert gas (TIG) repair 
welds that consisted of one or more fill passes were 



finally made on the ten specimens as the AE signals 
were collected and examined. 

Parameters I 

Two PAC WDI sensors were used along with the 
PAC DSP (Digital Signal Processing) card to record 
the repair weld acoustic activity. During all weld 
repairs the AE system timing, threshold and location 
parameters were set to the values provided in Table 
1. The AE sensors were arranged to provide linear 
location capabilities along the length of each repair 
zone while allowing adequate room for the welder to 
work and enough separation fiom the weld zone to 
prevent heat damage to the sensors. The three sensor 
location sets are defined as “P-A”, “P-B” and “P-C” 
in Figure 1. The sensors were bonded with hot melt 
glue seven inches apart and three inches off the weld 
centerline as previously mentioned. The hot melt 
glue provided an added degree of protection fiom the 
weld heat by softening and releasing before the 
sensors could be damaged. Lead breaks, 0.5 mm 2H, 
were performed after resetting the sensors for each 
repair zone to ensure that good and consistent sensor 
coupling was maintained for each repair cycle. A 
good sensor bond was defined as one where lead 
breaks, one inch fiom the sensor, produced a peak 
amplitude of 70 to 80 dJ3. 
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In addition to the re-weld samples, diamond saw 
notched tensile samples were low cycle fatigue 
loaded to generate “clean” crack signals, fiee fiom 
background weld noises, to use in comparison against 
the re-weld network model results. Here, the 
acoustic activity fiom five tensile coupons, cut fiom 
an Al-Li repair panel, were monitored with a single 
WDI sensor connected to a PAC DSP card during the 
low cycle fatigue loading. The sensor was centered 
just above the weld line and again bonded to the 
sample with hot melt glue. 

The tensile specimens were manufactured fiom a 
weld repair panel by cutting 1 .O inch wide strips 
perpendicular to the weld. A 0.08 inch deep notch 
was cut through the thickness of the specimen in the 
center of the weld with a diamond wheel saw to 
provide a crack initiation point. The samples were 
gripped in a 20 KIP tensile test machine and cycled 
to failure. The tensile tester was configured to 
provide a positive (tensile) 0.2 Hz sinusoidal loading. 
The system settings for the PAC DSP MISTRAS 
program were the same as those used for the weld 
repair monitoring except that a larger 50 dB threshold 
was required to overcome the hydraulic cavitation 
noises of the tensile tester. 

The parametric, waveform energy and Paw data 
were tabulated fiom all five specimens into ASCII 
files suitable for testing the trained neural networks. 
Here, to provide some commonality between the test 
results for each method, only those crack signals 
which could be identifiable in the parametric and 
waveform records were included in the test files. The 
individual signals were identified and matched based 
upon the time stamp given to each signal. 

Parameters I incwsec I Lockout I 7inch During the course of this research effort four acoustic 

I I Overcalibration I 0.5 inch 
signals were found to be produced most frequently. 
An example of these signals and there resulting 

Table 1. AE system initialization file repair welds. 

I I 

I t  
I I 

power spectrum plots are shown in Figures 2 through 
5. The first signal type (Figure 2) has been found to 
occur when critically sized cracking (visible by x-ray 
or by physical observation) is present in the weld. 
The signal is characterized as having a peak 
amplitude greater than 65 dB (1.8 volt after 60 dB 
gain) with a relatively large rise time, number of 
counts and energy value. The waveform (frequency) 
characteristics show three peak intensity regions 
located around 100,300 and 600 kHz. 

I I I Signal type two, Figure 3, was found to occur most 
fiequently in welds which showed a large amount of 
porosity and those that had seen multiple repair Figure 1. Sensor placement for weld repairs. passes. The signal was similar in shape to a type 1 
signal except that its amplitude and energy 
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Figure 2. Signal Type 1: Hot Cracking. 
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Figure 3. Signal type 2: Microcracking. 

parameters were much weaker. This was also 
apparent in the power spectrum, in that the same 
three peaks were present but with much less intensity. 

The strength and number of these signals were found 
to increase with the number of repair passes up to a 
point where major crack initiation began forming the 
type one signal. In other words, a large number of 
type two signals during a repair pass indicates that 

the region is susceptible to hot cracking damage fiom 
hture repair passes. 

A lithium hydroxide scale was observed to form on 
the surface of the repair weld as a result of the hgh 
temperatures involved in the fist pass of both the 
WPA and TIG welds. The porosity that occurred 
during the second or cover pass of the TIG welded 
repair was the result of the incomplete removal of 
this hydroxide scale prior to makmg the cover pass. 
From the data collected, both porosity and hot 
cracking were seen to be minimal during the initial 
weld, but began to occur more fiequently with the 
increase in subsequent passes, indicating that the 
effect is cumulative: with more re welds, there is an 
increased chance and extent of hot cracking. 

Low frequency (100 kHz) signals, Figure 3, were 
generated as a result of the weld puddle being formed 
and flowing during the weld operation. The 
amplitudes and energies of these signals were 
generally small with rise times that were similar to 
the type one signal. In certain instances very large, 
up to 90 dB, low fiequency signals were produced 
and were thought to be caused by the welder 
bumping the panel with the welding rod. 
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Figure 4. Signal type 3: Rubbindweld flow. 

In certain instances, during the repair, abnormal weld 
arcing produced spikes in the recorded waveforms. 
These signals had large amplitudes and energies with 



small rise times and number of counts, Figure 5. The 
power spectrum of these signals would essentially be 
a flat line out past 1 MHz due to the Dirac delta 
function nature of the spike. 
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Figure 5. Signal type 4: Spark noise. 

If the acoustic signals were as well behaved as these 
examples and as few in number, identification of hot 
cracking would be no problem. However, the signals 
presented are ideal in nature, when in reality, due to 
source amval time overlap, flaw location, number of 
signals, etc. it is very difficult to sort each signal by 
hand. The problem therefore is to develop a neural 
network mode to classify each signal by first 
categorizing all of the signals recorded during the 
weld into a particular signal class and secondly to 
identify the mechanism that creates each signal. 

NEURAL NETWORK DATA ANALYSIS 

Self organizing map artificial neural networks (ANN) 
were developed using Neuralworks Professional 
II/plus software by Neuralware to map features of 
the parametric, waveform and Paw data. The SOM 
is a two layered network (Figure 6), utilizing an input 
and a Kohonen layer. In the input layer, data is 
ordered and presented to the network as an N- 
dimensional input vector. As an example, “ N  could 
represent the signal rise time, counts, energy and 
amplitude from the parametric AE data set. The 

Kohonen layer, which is fully connected to the input 
layer, provides a two dimensional grid of neurons, 
through which unsupervised learning takes place. 
The result of training the SOM network is a 
topological map of the multidimensional input vector 
space, where order is preserved through a grouping of 
input data with similar features: The SOM performs 
the data clustering through a minimization of the 
Euclidean distance between the Kohonen layer 
weights and each input data vector. 
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Figure 6. Architecture of a SOM neural network. 

The training process consists of introducing the 
network to as many of the test related variables as 
possible and then to identify the clusters fiom within 
the output grid to known acoustic mechanisms. A 
useful feature of the software for data clustering is 
that the network can interpolate between the 
individual neurons during the test phase, producing 
X-Y coordinates for each input test vector. In doing 
so a continuous map of the N-dimensional input 
vectors is produced over the 2-dimensional grid 
extending in value from - 1 .O to + 1 .O along both axis 

Three SOM neural networks were trained, using the 
parametric, waveform energy and Paw AE data, for 
20,000 cycles each on the weld data using networks 
featuring a 10 by 10 Kohonen layer. 

PARAMETRIC 

The first network was presented four dimensional 
input vectors (rise time, counts, energy and 
amplitude) for each of the 67 1 signals stored in the 
data from several weld cycles. Here, the details of 
the parametric and waveform signals could be 
compared to gain a better estimate as to each source 
mechanism. By searching the associated waveform 
files, an estimate as to the source of the acoustic 
event could be made based upon notes taken during 
the weld repair and the frequencyhntensity data from 
the waveforms. Overall, only nine type one and nine 
type four signals were found in the cumulative AE 
data. The remaining signals were divided between 
the type two and three signals. 
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An X-Y map was generated by the SOM of the 
clustered input vectors. At this stage in the analysis 
identification of individual clusters from within this 
result file is difficult, if not impossible, without some 
knowledge of the input vector values. In order to 
better understand the results of the SOM the average 
amplitudes, energies, rise times and counts were 
computed and are shown in Figures 7 through 10. 
The plots show that the network clustered the highest 
amplitude, energy, rise time and count signals around 
the (0.0, -0.4) coordinate. These signals all had 
amplitudes ranging from the mid sixties up to 97 dE3, 
average energies in excess of 200 and over 1000 
counts. The rise times though varies from as small as 
1 ps to nearly 5000 ps. 

Figure 8. Average energies from parametric SOM. 

Due to the magnitude of these signal parameters, it 
was hypothesized that this cluster may represent weld 
crack activity. To investigate this hypothesis and 
determine the decision boundaries for the cluster, the 
parametric data was screened against the waveform 
time and frequency data in an attempt to identify the 
various signal types. Figure 11 shows graphically the 
results of this exercise. Notice that the nine “type 
one” signals all cluster in the region bordered by - 
0.20 < X < 0.60 and -0.20< Y < -0.60. Within this 
region three of the nine, type 4 signals are also 
captured along with one type 2 signal. None of the 
low amplitude-low frequency, type 3 signals, were 
included in the cluster. 

Figure 9. Average risetimes from parametric SOM. 

Figure 1 0. Average counts from parametric SOM. 

Figure 7. Average amplitudes from parametric SOM. 
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Figure 1 1. Signal type map for parametric data. 

WAVEFORM ENERGY 

The second network was presented with the same 67 1 
training AE signals as used for the parametric study. 
Four dimensional vectors made-up of the partitioned 
waveform energy served as inputs to the network. 
The vectors were computed by summing the area 
under the power spectrum over four 250 kHz bands 
up to 1.0 MHZ. 

The average values for the energy clusters were again 
computed for the SOM. A main peak is found to 
occur in the region -0.7 < X < -0.6 and -0.2 < Y < - 
0.1 for all the energy intervals. Secondary peaks how 
up in all but the lowest (0 to 250 kHz) energy band 
indicating that variations do exist in the higher 
fiequency components of the signals that may 
correspond to individual signal types. 

Using the same criterion as for the parametric data, a 
boundary could be placed around the type 1 signals, 
as shown in Figure 12. Overall, the network does not 
cluster the waveform energy data as well as it had 
with the parametric data. The separation between the 
type one and other source mechanisms is not as 
defined or complete. The network may be keying on 
the overall magnitude of the signal energies and not 
to the relative scale of energies fiom each signal. 
Both low and high fiequency signals with common 
total energy values may look the same to the 
network. 
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Figure 12. Signal type map for waveform energy 
data. 

COMBINED PARAMETRIC AND WAVEFORM 

ENERGY 

Combining the parametric and waveform energy data 
into a single training file produced the tightest and 
cleanest cluster of type one signals. As shown in 
Figure 13, the network clustered the “crack” signals 
between 0.0 < X < 0.8 and 0.3 < Y < -0.1. Within 
this cluster only five type four signals were found and 
none of the type two or three signals were present. 
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Figure 13. Signal type map for Paw data. 

TENSILE TEST 

The cumulative AE data collected fiom the tensile 
tests was edited to contain only the crack signals that 
were common to all three analysis formats. Thirty- 
four signals in all were found that could be traced to 
known crack growth activity. 
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When the parametric data was presented to the 
trained network (Figure 14) only three signals fell 
within the type 1 cluster. With the exception of five 
signals the tensile data instead, clustered in a region 
away fiom the type one zone. At first this would 
seem to indicate that the type one zone was in error, 
but the real reason is most likely an attenuation 
effect. The weld data was taken with the sensors 
located up to 12 inches fiom the source while the 
tensile tests were conducted with the sensor only 1 to 
2 inches fi-om the crack initiation point. Also, the 
acoustical variations between crack initiation due to 
welding and during tensile testing may be more 
different than previously expected. The same trend 
was found when the Paw tensile data was tested on 
the previously trained SOM (Figure 16). 

Surprisingly the waveform energy tensile AE data 
clustered the closest to the type one zone as shown in 
Figure 15. Most of the signals fell within the zone, 
while the remainder bordered the zone. Apparently 
the fiequency content of the crack initiation signals is 
similar enough between tensile testing and weld 
repair hot cracking that the network could identify 
the source. 
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Figure 14. Parametric tensile data clusters. 

CONCLUSIONS 

The process through which acoustic emission signal 
analysis can be used to detect the onset of hot 
cracking during weld repairs of aluminum-lithium 
has been demonstrated. A self organizing neural 
network has shown the ability to separate the AE data 
into clusters based on the relative magnitudes of their 
descriptive features. A waveform, parametric and 
combined approach were all used to characterize the 
formation of hot cracking during weld repair. 
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Figure 15. Waveform energy tensile data clusters. 
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Figure 16. Paw tensile data clusters. 

Overall, the hot cracking signals were characterized 
as having peak fiequencies at 100,300 and 600 kHz 
along with moderate to high amplitudes and energies. 
The amount and magnitude of the acoustic activity 
would increase fiom reweld to reweld until final 
coalescence of the microcracks and/or porosity lead 
to final formation of large scale cracking. In some 
cases these cracks would be visible, but normally 
only X-Ray would show the extent of damage. 

The results were verified through low cycle fatigue 
testing on small tensile samples cut fiom a repair 
welded panel. A limited number of “clean” crack 
signals were produced from these tests and mapped 
against the signal clusters determined by the neural 
network. The largest of these crack signals fell 
within the boundaries of the hot cracking clusters. 


